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Abstract— The paper focuses on the small-signal stability
analysis of large power systems with inclusion of multiple delayed
signals. The following four techniques are compared: (i) a Cheby-
shev discretization scheme of an equivalent partial differential
equations that resembles the original delay differential-algebraic
equations (DDAEs); (ii) an approximation of the time integration
operator; (iii) a linear multi-step discretization of the DDAEs
based on an high-order implicit time-integration scheme; and
(iv) the well-known Padé approximants. These techniques are
compared using a GPU-based parallel implementation of the
Shur method and QR factorization and tested through a real-
world transmission system.

Index Terms— Time delay, delay differential algebraic equa-
tions (DDAE), multiple delays, small-signal stability, Chebyshev
discretization, linear multi-step (LMS) methods, Padé approxi-
mants.

I. INTRODUCTION

RECENT developments of wide area control schemes, the

higher and higher penetration of distributed generations

with decentralized controls and the increased number of mea-

surements based on telecommunication systems (e.g., PMUs)

lead to an increasing impact of signal delays on power system

dynamic response and operation.

This paper focuses on small signal stability analysis of

large power systems with inclusion of multiple delays. This

analysis involves the formulation of power systems as delayed

differential algebraic equations (DDAEs), whose stability anal-

ysis pose particularly challenging mathematical and numerical

issues.

While time delays are intrinsic of physical and control

systems, these are typically neglected or approximated with

simple lag blocks in the conventional model of power systems

for voltage and transient stability analysis. Most power system

devices, e.g., transformers and synchronous machines, are ac-

tually not affected by delays, except for very long transmission

lines [1], [2]. However, most regulators do and, in recent years,

the ubiquitous presence of communication systems and remote

measurements, e.g., phasor measurement units (PMUs), has

brought the attention on the impact of the issues related to the

communication of remote control signals and the impact of

the delays of these signals on the stability of the power grid.

The focus of most research papers in this field is, as natural,

devoted to the design of robust controllers that are able to

reduce the impact of communication delays. The following

papers are recent contributions to the robust control of wide

area control schemes (WACS) [3]–[10]. The main goal of
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the papers above is to improve the effect of power system

stabilizers to damp interarea oscillations. Another emerging

area where delays are relevant is the load frequency control

[11], [12].

This paper focuses on the evaluation of the small-signal sta-

bility of large DDAEs. Delays transform the classical problem

of finding the roots of the state matrix of the system at the

equilibrium point into the solution of a transcendental char-

acteristic equation, with infinitely many roots. While there are

attempts to define an exact analytic solution for oversimplified

power system models [13]–[15], an explicit solution cannot be

found in general. Other approaches are based on the definition

of a Lyapunov function with the well-known difficulties to find

such a function [16], [17] or on the solution of a linear matrix

inequality (LMI) problem [18], [19], whose computational

burden, however, is cumbersome but has become tractable for

some applications [5]. Other methods are based on the well-

known Padé approximants which allow representing the delay

as a set of linear differential equations [12].

This paper considers four different approaches that approx-

imate the solution of the small-signal stability of DDAEs.

These are: (i) a Chebyshev discretization of a set of partial

differential equations (PDEs) that are equivalent to the original

DDAEs [20]–[23]; (ii) a discretization of the time integration

operator (TIO) as proposed in [24]–[26]; a linear multi-step

(LMS) approximation which has been proposed in [27]–[29]

and is implemented in the open-source software tool DDE-

BIFTOOL [30]; and the well-known Padé approximants [31].

The Chebyshev discretization has been successfully applied

to power systems with a single delay [32], [33] and the Padé

approximants have been used in [12] but not considered for

the solution of the small-signal stability problem. The other

two methods are considered for the first time for the analysis

of power systems.

A common characteristics of the techniques above is the

high computational burden, which, unfortunately, increases

more than linearly with the size of the problem. Hence proper

numerical schemes and implementations have to be used.

This paper exploits a GPU-based numerical library, namely,

MAGMA, that provides an efficient parallel implementation of

LAPACK functions and QR factorization for solving the linear

eigenvalue problem [34], [35].

The novel contributions of the paper are the following:

1) A comparison of four methods to approximate the spec-

trum of large power system models modelled as a set

of DDAE. These methods are: Chebyshev discretization,

approximation of the TIO, LMS approximation and Padé

approximants.

2) A comprehensive testing of the GPU-based numerical



library MAGMA and state-of-the-art NVidia GPU card

for the solution of very large linear eigenvalue problems.

The remainder of the paper is organized as follows. Section

II defines a general model of delayed power systems and in-

troduces the techniques to evaluate the small-signal stability of

DDAE with inclusion of multiple delays. Section III presents

simulation results based on a dynamic 1479-bus model of the

all-island Irish system. Conclusions are drawn in Section IV.

II. SMALL-SIGNAL STABILITY OF DELAYED POWER

SYSTEMS MODELS

This section briefly recalls definitions and outlines the

theoretical background on small-signal stability analysis of

DDAEs with inclusion of multiple delays and introduces

four techniques to approximate the spectrum of DDAEs with

inclusion of multiple delays.

A. General Model of Power Systems with inclusions of Delays

The conventional power system model used for solving

voltage and transient stability analyses consists of a set of

differential algebraic equations (DAEs) as follows [36]:

ẋ = f(x,y,u) (1)

0 = g(x,y,u)

where f (f : Rn+m+p 7→ R
n) are the differential equations, g

(g : Rn+m+p 7→ R
m) are the algebraic equations, x (x ∈ R

n)

are the state variables, y (y ∈ R
m) are the algebraic variables,

and u (u ∈ R
p) are discrete variables modeling events, e.g.,

line outages and faults.

The DDAE formulation is obtained by introducing time

delays in (1). Let

xd = x(t− τ) (2)

yd = y(t− τ)

be the retarded or delayed state and algebraic variables,

respectively, where t is the current simulation time, and τ
(τ > 0) is the time delay. In the remainder of this paper, since

the main focus is on small-signal stability analysis, time delays

are assumed to be constant.

If some state and or algebraic variables in (1) are affected

by a time delay as in (2), one obtains:

ẋ = f(x,y,xd,yd,u) (3)

0 = g(x,y,xd,u)

which is the index-1 Hessenberg form of DDAE given in [37],

[38]. Note that g do not depend on yd. This allows obtaining

a closed form for the small-signal stability analysis and, as

discussed in [32], (3) is adequate to model, without lack of

generality, power system models. Note that this assumption is

well satisfied in physical systems such as power system ones

as it is quite uncommon that the same delay affects several

variables and, in particular, both state and algebraic ones, of

the system.

B. Small-Signal Stability of DDAE

Assume that a stationary solution of (3) is known and has

the form:

0 = f(x0,y0,x0,y0,u0) (4)

0 = g(x0,y0,x0,u0)

where it has been used the fact that, in steady-state, xd0 = x0

and yd0 = y0. Moreover, discrete variables u0 are assumed to

be constant in the remainder of this paper. Then, differentiating

(3) at the stationary solution yields:

∆ẋ = f
x
∆x+ f

xd
∆xd + f

y
∆y + f

yd
∆yd (5)

0 = g
x
∆x+ g

xd
∆xd + g

y
∆y (6)

where, neglecting without loss of generality singularity-

induced bifurcation points, it can be assumed that g
y

is non-

singular. Substituting (6) into (5), one obtains:1

∆ẋ = A0∆x+A1∆x(t− τ) +A2∆x(t− 2τ) (7)

where:

A0 = f
x
− f

y
g−1
y

g
x

(8)

A1 = f
xd

− f
y
g−1
y

g
xd

− f
yd
g−1
y

g
x

(9)

A2 = −f
yd
g−1
y

g
xd

(10)

The first matrix A0 is the well-known state matrix that is

computed for standard DAEs of the form (1). The other two

matrices are not null only if the system is of retarded type.

The matrix A1 is found in any delay differential equations,

while A2 appears specifically in DDAEs, although it can be

null if either f does not depend on yd or g does not depend

on xd. If one of the two conditions above are satisfied, (14)

becomes:

∆(λ) = λIn −A0 −A1e
−λτ , (11)

which is the case considered in [32]. Note that, in this paper,

no simplification is imposed to (3).

Equation (7) is a particular case of the standard variational

form of the linear delay differential equations:

∆ẋ = A0∆x(t) +

ν
∑

i=1

Ai∆x(t− τi) . (12)

The substitution of a sample solution of the form eλtυ, with

υ a non-trivial possibly complex vector of order n, leads to

the characteristic equation of (12):

det ∆(λ) = 0 (13)

where

∆(λ) = λIn −A0 −

ν
∑

i=1

Aie
−λτi (14)

is called the characteristic matrix [39]. In (14), In is the

identity matrix of order n. The solutions of (14) are called

the characteristic roots or spectrum, similar to the finite-

dimensional case (i.e., the case for which Ai = 0 ∀i =
1, . . . , ν ).

1The interested reader can find in [32] the details on how to determine
(8)-(10) from (5) and (6).
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As for the finite-dimensional case (i.e., ν = 0), the stability

of (12) can be defined based on the sign of the roots of (14),

i.e., the stationary point is stable if all roots have negative real

part, and unstable if there exists at least one eigenvalue with

positive real part.

Equation (14) is transcendental and, hence, shows infinitely

many roots. In general, the explicit solution of (14) is not

known and only approximated numerical solutions of a subset

of the roots of (14) can be found, as discussed in the following

subsections.

C. Chebyshev discretization scheme

This approach consists in transforming the original problem

of computing the roots of a retarded functional differential

equations into a matrix eigenvalue problem of a PDE system

of infinite dimensions. No loss of information is involved in

this step. Then the dimension of the PDE is made tractable

using a discretization based on a finite element method.

Consider the single-delay case first. Let DN be the Cheby-

shev differentiation matrix of order N (see the Appendix for

details) and define

M =

[

Ĉ ⊗ In

A1 0 . . . 0 A0

]

, (15)

where ⊗ indicate the tensor product or Kronecker product;2 In

is the identity matrix of order n; and Ĉ is a matrix composed

of the first N − 1 rows of C defined as follows:

C = −2DN/τ . (16)

Then, the eigenvalues of M are an approximated spectrum of

(11). As it can be expected, the number of points N of the

grid affects the precision and the computational burden of the

method, as it is further discussed in the case study.

The matrix M is the discretization of a set of PDEs where

the continuum is represented by the interval ξ ∈ [−τ, 0].
The continuum is discretized along a grid of N points and

the position of such points are defined by the Chebyshev

polynomial interpolation. The last n rows of M impose the

boundary conditions ξ = −τ (i.e., A1) and ξ = 0 (i.e., A0),

respectively.

Figure 1 illustrates matrix (15) through a pictorial represen-

tation. Each element of the grid is a n×n matrix and there are

N2 elements. Light gray blocks are defined by the Chebyshev

discretization and are very sparse. Dark gray blocks represent

the state matrix A0 and delayed matrix A1 that appear in (11).

Finally, white blocks indicate null matrices.

Let now consider the general multi-delay case of the char-

acteristic equation (14) and, thus, let assume that there are

ν delays, with τ1 < τ2 < · · · < τν−1 < τν . Each point of

the Chebyshev grid corresponds to a delay θk = (N − k)∆τ ,

with k = 1, 2, . . . , N and ∆τ = τν/(N − 1). Hence, k = 1
corresponds to the state matrix Aν , which corresponds to the

maximum delay τν ; and k = N is taken by the non-delayed

state matrix A0. If a delay τi = θk for some k = 2, . . . , N−1,

2See http://www.encyclopediaofmath.org/index.php/Tensor product for a
formal definition of the Kronecker product.

Fig. 1. Representation of the matrix M for a system with a single delay τ

and characteristic equation (11).

then the correspondent matrix Ai takes the position k in the

grid. Of course, in general, the delays of the system will

not match the points of the grid. With this aim, a linear

interpolation is considered in this paper, as follows. Let the

time delay τi, i 6= k, satisfy the condition:

θk < τi < θk+1 . (17)

Then, the matrices that will be added to the positions k and

k + 1 are, respectively:

Ak,i =
τi − θk
∆τ

Ai , Ak+1,i =
θk+1 − τi

∆τ
Ai . (18)

Then, the resulting matrix of each point k of the grid is

computed as the sum of the contributions of each delay that

overlaps that point:

Ak =
∑

i∈Ωi

Ak,i , (19)

where Ωi is the set of delays τi that satisfies (17). Other more

sophisticated interpolation schemes can be used. For example,

a Lagrange polynomial interpolation is implemented in [25].

Figure 2 illustrates the Chebyshev discretization approach for

the multiple-delay case.

D. Discretization of the Time Integration Operator (TIO)

The discretization of the time integration operator that is

proposed in [25] is similar to the approach above, but instead

of defining the discretization of a PDE, it discretizes directly

the set of original DDE equations. For clarity, consider first

the single-delay case and consider the following system:

∆ẋ(t) = A0∆x(t) +A1∆x(t− τ) , (20)

which is obtained from (7) by assuming that A2 = 0. The

approach consists in: (i) dividing the interval [−τ, 0] into a

mesh of N intervals with constant step size h = τ/N ; and

(ii) applying an integration scheme (e.g., a RK method) to the

mesh that approximate the continuous solution of (20). Then

the discrete counterpart of (20) is given by:

zi+1 = SNzi , (21)
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Fig. 2. Representation of the Chebyshev discretization for a system with ν

delays τ1 < τ2 < · · · < τν−1 < τν . In the general case, the delays do not
match exactly the grid and, thus, an interpolation between consecutive points
of the grid is required.

where z ∈ R
n·r·N , and SN is the following n ·r ·N ×n ·r ·N

matrix:

SN =



















B0 0 . . . 0 B1

Inr 0 . . . 0 0

0 Inr . . . 0 0

...
...

. . .
...

...

0 0 . . . Inr 0



















, (22)

where

B0 = R · (1re
T
r ⊗ In) , (23)

B1 = hR · (A⊗A1) , (24)

and

R = (Inr − hA⊗A0)
−1 ,

1r = (1, . . . , 1)T ,

er = (0, . . . , 0, 1)T ,

and A is the matrix of the Butcher’s tableau that defines the

integration scheme, as follows:

C A

B
=

c1 a11 a12 . . . a1r

c2 a21 a22 . . . a2r
...

...
...

. . .
...

cr ar1 ar2 . . . arr

b1 b2 . . . br

(25)

and Inr is the identity matrix of order n · r. Note that A
must be invertible, which means that an implicit scheme has

to be used (e.g., BDF formulae and Radau methods).

The single-delay case can be extended to the multi-delay

one by modifying the first row of the matrix SN in (22).

Let’s assume that there are ν delays, with τ1 < τ2 < · · · <
τν−1 < τν . Then, the first and the last elements of the first

row of (22) are occupied by B0 and Bν , where B0 is defined

as in (23) and Bν is:

Bν = hR(hA0)(A⊗Aν) . (26)

The state matrices associated with the remaining ν− 1 delays

are fitted to the grid through a linear interpolation similar

to that described in Subsection II-C. The interested reader

can find in [25] a more general interpolation approach based

on Lagrange polynomials and a detailed discussion on the

convergence properties of this LMS discretization approach.

E. Linear Multi-Step (LMS) Approximation

Another possible discretization based on a linear multi-step

approximation is that proposed in [29] and implemented in

the software tool DDE-BIFTOOL [28]. The time integration

operator is discretized using a LMS method with polynomial

interpolation to evaluate the delayed terms. Applying a k-step

LMS method to (12), one obtains:

k
∑

j=0

αjxL+j = h
k

∑

j=0

[

βjA0xL+j +
ν
∑

i=0

(Aix̃(tL+j − τi))

]

(27)

where αj and βj are the coefficients of the LMS method and

x̃(tL+j − τi) are approximations of the values of the state

variables in past. These are computed using the Nordsieck

interpolation, as follows:

x̃(tp − ǫh) =

σ
∑

ℓ=−ρ

Pℓ(ǫ)xp+ℓ, ǫ ∈ [0, 1) (28)

where

Pℓ =

σ
∏

k=−ρ,k 6=ℓ

ǫ− k

ℓ− k
(29)

The resulting method is explicit whenever β0 = 0 and

min{τi} > σh. Further details on this technique can be found

in the DDE-BIFTOOL documentation and source code [30].

The LMS-method forms an approximation of the time

integration operator over the time step h, hence the roots µ

of the Jacobian matrix of (27) are an approximation of the

exponential transforms of the roots λ of (14):

µ = exp(hλ) (30)

The size of the resulting eigenvalue problem is inversely

proportional to the step length h used in the discretization.

The choice of h is heuristic and is a critical aspect of this

technique. If the step length is too small, the size, say K,

of the problem can be huge, e.g., K ≫ n; if h is too large

the approximation of the roots of (14) might not be accurate.

The heuristic method to estimate h described in [29] leads to

precise results although it is quite conservative. Larger values

of h can be obtained using the approach given in more recent

works, e.g., [40]. Note also that the procedure given in [29]

may lead to determine a high number of extraneous positive

roots. A root is discarded if the following condition is satisfied:

abs(µj) > exp(h ·max{τi}), j = 1, 2, . . . ,K (31)
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F. Padé Approximants

The well-known time shifting property of the Laplace trans-

form is as follows:

f(t− τ) u(t− τ)
L

−→ e−τsF (s) (32)

where s is the variable of the Laplace transform L, or complex

frequency; u(t) is the unit step function; and F (s) is the

Laplace transform of the function f(t). The approach based on

Padé approximants consists in defining a rational polynomial

transfer function, say P (s), that approximates e−τs. Then, the

inverse Laplace transform L−1 allows obtaining the approxi-

mated time domain function φ(t) that leads to an approximated

DAE as in (1):

e−τsF (s) ≈ P (s)F (s)
L−1

−→ φ(t) (33)

Padé approximants are based on the Taylor’s expansion of

e−τs in the frequency domain:

e−τs = 1− τs+
(τs)2

2!
−

(τs)3

3!
+ . . . (34)

≈
b0 + b1τs+ · · ·+ bq(τs)

q

a0 + a1τs+ · · ·+ ap(τs)p
,

where coefficients a1, . . . , ap and b1, . . . , bq are obtained by

dividing the polynomials of the right hand side of (34) and

imposing that the first p+ q coefficients are the same as those

of the Taylor’s expansion [31]. Note that s has a different

meaning than λ in (14). In fact, λ takes an infinite number

of discrete values that solve (14), while s is the continuous

independent variable of the Laplace transform.

Generally, p ≥ q is imposed in (34). If p = q, the

coefficients ai and bi are obtained by the following iterative

formula:

a0 = 1 , ai = ai−1
p− i+ 1

i · (2p− i+ 1)
, and (35)

bi = (−1)i · ai .

The case p = q is noteworthy as the amplitude of the frequency

response of the Padé approximant is exact, only the phase

is affected by an error. p = q = 6 is a common choice in

numerical simulations.

The higher the order of the Padé approximant, the lower

the phase error (see, for example the discussion on Padé

approximants in [12]). Note that, for small delays, e.g., of the

order of milliseconds, which are common in power systems,

the order p of the Padé approximant cannot be too high as the

polynomial coefficients depend on the powers of τ .

For example, let p = 9 and τ = 10−3 s. Then, one obtains

a9 = −b9 = 5.6679 · 10−11 and τ9 = 10−27, which leads

to a9 · τ9 = 5.6679 · 10−38. This number is critically close

to the minimum positive value that can be represented by

the single-precision binary floating-point defined by the IEEE

754 standard, i.e., 2−126 ≈ 1.18 · 10−38. High order Padé

approximants may also show unstable poles of defects (i.e., a

pair of a pole and a zero that are very close but not equal,

see [31]). Hence, the floating point representation binds the

maximum value of p, being pmax = qmax = 10 the most

commonly used upper limit.

It is important to note that the approach based on Padé

approximants does not deal with (14) but, rather, consists

in transforming the set of DDAE into a set of DAE where

delays are approximated by a set of linear ordinary differential

equations. For the sake of example, let’s consider the case of

the unit step function u(t). Based on (34), which is in the

frequency domain, one can readily obtain the equivalent time-

domain function and include it in any standard simulation tool.

Consider, for simplicity but without lack of generality, the case

p = q. The approximant ud of order p, in time domain, of

u(t− τ) given by (35) is as follows:

ud = x̃1 + b1τ x̃2 + · · ·+ bp−1τ
p−1x̃p + bpτ

p ˙̃xp (36)

where:
˙̃xi = x̃i+1, i = 1, 2, . . . , p− 1 (37)

and

apτ
p ˙̃xp = u− (a0x̃1 + a1τ x̃2 + · · ·+ ap−1τ

p−1x̃p) (38)

The set of equations (36)-(38) is linear and introduces p state

variables per each delay. Clearly, there is no limitation to the

number of delays that can be included in the systems, and

there is no structural difference between the single-delay and

the multiple-delay case.

III. CASE STUDY

The techniques presented above work satisfactorily for small

size systems, e.g., few tens of state variables and few tens of

delays. The author has tested the four techniques discussed

in the previous section on several IEEE benchmark systems,

e.g., the IEEE 14 bus system and the IEEE 39 bus system.

In all cases, the results obtained with the four techniques for

small- and medium-size power systems are very similar. The

Chebyshev discretization and the Padé approximants always

provide good results for small systems. TIO is also accurate

provided that N is increased with respect to the Chebyshev

method. For example, N = 7 is acceptable for small power

systems. On the other hand, LMS provides good results if h is

relatively small. For example, h = 0.1 s appears acceptable for

small power systems. However, standard benchmarks are too

small to allow drawing sensible conclusions on the robustness

and the accuracy of the techniques discussed Section II for

large scale eigenvalue problems. Eigenvalue stiffness and the

numerical rounding errors play a crucial role as the size of the

problem scales up, as shown in this section.

In this case study, the techniques in Subsections II-C to II-

F are compared through a dynamic model of the all-island

Irish transmission system set up at the UCD Electricity Re-

search Centre. The model includes 1, 479 buses, 1, 851 trans-

mission lines and transformers, 245 loads, 22 conventional

synchronous power plants with AVRs and turbine governors,

6 PSSs and 176 wind power plants. The topology and the data

of the transmission system are based on the actual real-world

system provided by the Irish TSO, EirGrid, but dynamic data

are guessed and based on the knowledge of the technology of

power plants.

Since the objective is to compare different methods for the

small-signal stability analysis of DDAEs, constant time delays
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TABLE I

RANGES OF TIME DELAYS INCLUDED IN THE ALL-ISLAND IRISH SYSTEM

Device Delayed Signal Delay Range [s]

Primary voltage regulator bus voltage τ
AVR

(0.005, 0.015)

Power system stabilizer frequency τ
PSS

(0.05, 0.25)

Reheater of steam turbines steam flow τ
TG

(3, 11)

Wind turbine freq. reg. frequency τ
TFR

(0.05, 0.25)

Therm. controlled load frequency τ
TCL

(0.05, 0.25)

TABLE II

NUMBER OF VARIABLES FOR THE ALL-ISLAND IRISH SYSTEM

Model Type State vars Algeb. vars

No delays DAE 2, 239 7, 478

Constant delays DDAE 1, 935 7, 338

Padé approx. (p = q = 6) DAE 3, 415 7, 929

Padé approx. (p = q = 10) DAE 4, 399 7, 929

are included in most regulators, as follows. All bus terminal

voltage measurements of the automatic voltage regulators

(AVRs) of the synchronous machines include delays in the

range τ
AVR

∈ (5, 15) ms [32]. The input frequency signal of

PSS devices is delayed in the range τ
PSS

∈ (50, 250) ms [4].

The reheater of the turbine governors of thermal power plants

is modelled as a pure delay in the range τ
RH

∈ (3, 11) s [41].

The model of some variable-speed wind turbines includes

a frequency regulation that receives as input the frequency of

the center of inertia of the system. The model of the frequency

regulator is based on the transient frequency control described

in [42]. The frequency signal is assumed to be similar to those

of PSS devices, hence τ
TFC

∈ (50, 250) ms.

Finally, 20% of the loads are assumed to provide a fre-

quency regulation. In other words, 20% of loads are assumed

to be equivalent thermostatically controlled heating systems.

The dynamic model of these loads and their control is based on

[43] and [44], respectively. Again, the input frequency signal

is delayed and, in analogy with PSS devices, delays are chosen

in the interval τ
TCL

∈ (50, 250) ms.

The delay ranges considered in this case study are sum-

marized in Table I. In total, the system contains 296 delays

ranging in the interval (0.005, 11) s. This wide range is

chosen with the purpose of determining the accuracy and

the performance of the methods presented in Section II. The

resulting DDAE are stiff in terms of both device and regulator

time constants, which span a range from tens of milliseconds

to tens of seconds, and pure time delays.

The order of the system, i.e., the number of state and

algebraic variables, depends on the model. Table II shows

system statistics for four different models, namely, no delay;

constant delays; Padé approximant with p = q = 6; and Padé

approximant with p = q = 10. The only DDAE is the model

where delays are implemented as in (3), as Padé approximants

transform the delays into a set of linear differential equations.

It is noteworthy that the DDAE is also the model with the

lower number of variables. This is due to the fact that, in the

standard model with no delays, delays are actually modelled

as a simple lag transfer function, each of which introduces a

state variable. Note also that, the lag transfer function is, in

turn, the Padé approximant with p = 1 and q = 0. Higher

order Padé approximants lead to a substantial increase of the

order of the system, and hence of the computational burden

of the initialization of system variables and time domain

simulations.3 Transient analysis is out of the scope of this

paper but the latter remark has to be kept in mind when

choosing the power system models.

All simulations are obtained using Dome, a Python-

based power system analysis toolbox [45]. The Dome

version used for in this case study is based on Python

3.4.1 (http://www.python.org), NVidia Cuda 7.0,

Numpy 1.8.2 (http://numpy.scipy.org), CVXOPT

1.1.7 (http://abel.ee.ucla.edu/cvxopt/), MAGMA

1.6.1 (icl.cs.utk.edu/magma/software), and has been

executed on a 64-bit Linux Fedora 21 operating system

running on a two Intel Xeon 10 Core 2.2 GHz CPUs, 64 GB

of RAM, and a 64-bit NVidia Tesla K20X GPU.

Table III shows the 20 rightmost eigenvalues for the all-

island Irish transmission system using different system models

and techniques. For reference, the first column also shows

the 20 rightmost eigenvalues of the non-delayed model. This

system does not show any poorly damped mode, i.e., a mode

whose damping is below 5%. Column 2 to 5 of Table III show

the results obtained using the Chebyshev discretization, the

discretization of the time integrator operator (TIO), the linear

multi-step (LMS) approximation and the Padé approximants.

Two cases are shown for the latter, namely, p = q = 6
and p = q = 10. Both Chebyshev and TIO discretizations

use a grid of order N = 7. This number is considered a

good trade-off between accuracy and computational burden.

The interested reader can find further details on the accuracy

of the Chebyshev and TIO discretizations in [32] and [25],

respectively. For the discretization of the TIO, a fifth order

Radau IIA method is used, with r = 3 and the following

Butcher’s tableau:

2
5 −

√
6

10
11
45 − 7

√
6

360
37
225 − 169

√
6

1800 − 2
225 +

√
6

75
2
5 +

√
6

10
37
225 + 169

√
6

1800
11
45 + 7

√
6

360 − 2
225 −

√
6

75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

(39)

Finally, an Adams-Bashforth 6th order method is

used for the LMS approximation, with following

coefficients: α = [1, −1, 0, 0, 0, 0] and β =
[0, 1901/720, −1387/360, 109/30, −637/360, 251/720].
A time step h = 0.2 s is used for the LMS approximation.

To complete the comparison of the four techniques whose

results are provided in Table III, Table IV shows the computa-

tional burden of these techniques using the GPU-based MAGMA

library. The information given in Table IV is the time required

to setup the full matrix for the eigenvalue analysis, the order

of this matrix, and the time required to solve the full linear

eigenvalue problem (LEP).

While all methods are necessarily approximated, the most

accurate method to estimate the spectrum of the DDAE can

3Padé approximants also lead to increase the number of algebraic variables
because the output ud of the approximated transfer function (34) is algebraic,
as shown by (36).
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TABLE III

20 RIGHTMOST EIGENVALUES FOR THE ALL-ISLAND IRISH SYSTEM – ALL-DELAY SCENARIO

No delay Chebyshev Discr. Discr. of TIO LMS Approx. Padé Approx. Padé Approx.

N = 7 N · r = 21 h = 0.2 s p = q = 6 p = q = 10

−0.00010 −0.00010 −3.16992 0.91568 −0.00010 14370.508

−0.02500 −0.02500 −3.46994 0.82393 −0.02500 2166.5568

−0.02646 −0.02650 −3.54846 0.58361 −0.02848 1545.1549

−0.03780± 0.32935i −0.03780± 0.32935i −3.79015 0.36998 −0.03780± 0.32935i 1540.3456

−0.05475 −0.05475 −3.79481 0.29701 −0.05475 1445.2436

−0.06615 −0.06100± 0.32755i −3.85081 0.10980 −0.06615 1434.9052

−0.08759± 0.10409i −0.06615 −3.86392 −0.00327 −0.08759± 0.10409i 1019.4456

−0.11681 −0.08759± 0.10409i −4.25558 −0.05199 −0.10759± 0.33539i 891.50938

−0.12665± 0.34150i −0.11445± 0.78025i −4.33068 −0.09677 −0.11681 795.91920

−0.13055± 0.17132i −0.11681 −4.52052 −0.13551 −0.12906± 0.34552i 724.39851

−0.13922 −0.12818± 0.34639i −4.68635 −0.15511 −0.13380± 0.17103i 648.25856

−0.13950 −0.13455± 0.17176i −4.80909 −0.23989 −0.13417 625.18431

−0.13978 −0.17139 −4.84030 −0.32102 −0.17474± 0.27121i 593.37327

−0.14008 −0.17358± 0.27051i −5.24457± 0.35652i −0.34557 −0.17504 587.83144

−0.14027 −0.17504 −5.26514 −0.45854 −0.18411± 0.78161i 533.95381

−0.14048 −0.18208± 0.81259i −5.67946± 0.81568i −0.55539 −0.18562 528.11686

−0.14062 −0.18316± 0.81807i −5.74580 −0.67482 −0.18892 519.93536

−0.14081 −0.18562 −5.80760 −0.73128 −0.20000 497.91600

−0.14104 −0.18877± 0.81637i −5.98648 −0.95327 −0.20483± 0.87988i 456.93850

−0.14119 −0.18892 −6.10122 −0.97517 −0.20944± 0.36519i 420.89130

TABLE IV

COMPUTATIONAL BURDEN OF DIFFERENT METHODS TO COMPUTE

EIGENVALUES USING GPU-BASED MAGMA LIBRARY

Model Settings Matrix setup Matrix order LEP sol.

No delays 1.18 s 2, 239 11.91 s

Cheb. discr. N = 7 29.4 s 13, 545 12.69 m

Discr. of TIO N · r = 21 7.07 h 40, 635 50.73 s

LMS approx. h = 0.2 s 7.48 m 32, 895 20.83 s

Padé approx. p = q = 6 2.01 s 3, 415 35.21 s

Padé approx. p = q = 10 2.78 s 4, 399 76.75 s

be expected to be the one based on Chebyshev discretization

scheme. As indicated in [25], in fact, this approach shows a

fast convergence. Moreover, simulation results on large scale

systems indicate that the Chebyshev discretization does not

require N to be high [32]. The accuracy of other methods

can be thus defined based on a comparison with the results

obtained through the Chebyshev discretization method. As

shown in Table IV, the lightest computational burden is pro-

vided by Padé approximants. However, the solution obtained

with p = q = 6 shows some differences with respect to

the Chebyshev discretization, e.g., two poorly damped modes,

namely −0.26201 ± 6.3415i and −0.2746 ± 5.9609i do not

appear in the solution based on the Chebyshev discretization.

Both modes show a damping lower than 5% and, through

the analysis of participation factors [46], both are strongly

associated with fictitious state variables introduced by the Padé

approximant, e.g., (37) and (38). This effect has to be expected

as, extraneous oscillations are a well-known drawback of Padé

approximants. Finally, observe that for the Padé approximant

with p = q = 10, results are fully unsatisfactory due to

numerical issues. These are due to the extremely small values

taken by coefficients in (36) and (38). For the considered case

study, numerical problems show up for p = q ≥ 8.

Tables III and IV also show that the techniques based

on the TIO discretization and LMS approximation are both

highly inaccurate and time consuming. In particular, the TIO

discretization requires a huge time to setup up the matrix

SN of (22). It is likely that the implementation of the

algorithm that build SN can be improved using some sort of

parallelization, which is not exploited in this case. However,

the inaccuracy of the results makes unnecessary improving the

implementation of this technique. Note also that the size of

the computational burden of the LMS approximation strongly

depends on the time step h used in (27). The smaller the time

step h, the more precise the approximation, but the higher the

computational burden. However, for h < 0.2, the size of the

eigenvalue problem becomes too big and the MAGMA solver

fails returning a memory error. Unfortunately, in this case,

h = 0.2 s is too large to obtain precise results.

The results shown in Table III illustrate an extreme scenario

with hundreds of highly stiff delays. To better understand the

features of the four techniques discussed in the paper, it is

useful to discuss two other scenarios, as follows:

• The all-island Irish transmission system with inclusion

of only small delays, namely those associated with the

AVRs of the conventional power plants.

• The all-island Irish transmission system with inclusion

of only large delays, namely those associated with the

reheaters of the turbines of conventional power plants.

Note that conventional power plants in the considered model

of the all-island Irish transmission system are only 22, thus

leading to 22 delays per scenario as opposed to the 296 delays

of the all-delay scenario. Hence, the two scenarios above allow

understanding the accuracy of the four techniques considered
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in the paper for a reduced number of delays with low stiffness.

The 20 rightmost eigenvalues for the two scenarios above are

shown in Tables V and VI, respectively. The main conclusions

that can be drawn based on these tables are as follows.

• The consistency of the results of Tables III, V and VI

confirms that the Chebyshev discretization is the most

accurate and robust method of those considered in the

paper. This has to be expected based on the discussion

on the convergence properties of this method provided in

[25] and references cited therein. Note also that there is

no relevant difference between the three scenarios, i.e.,

all delays, small delays and large delays, with respect to

the computational burden and approximation introduced

by the Chebyshev discretization.

• Padé approximants work best for small delays and p =
q = 6. They also provide consistent although not fully

accurate results for large delays regardless the order of the

approximants. The approximants may lead to numerical

issues for small delays and high order (see the small-

delay scenario with p = q = 10 in Table V). These

issues are directly associated with the size of the LEP. The

condition number of the state matrix, in fact, increases

as the number of delays increases, as the values of the

delays decrease and as the order of the Padé approximants

increases.

• The TIO method is not particularly accurate regardless

the number and the values of the delays. Results are

more reliable for the small-delay scenario, although not

all oscillatory modes are properly captured. According to

the discussion provided in [25], to increase the points of

the discretization grid, i.e., setting N > 7 would certainly

increase the accuracy but, for large systems, the resulting

matrix SN becomes intractable.

• Finally, the LMS method appears to be the most inaccu-

rate of all methods discussed in the paper for large LEPs.

This method works slightly better for small eigenvalues,

but results are poor in all scenarios considered in this

case study (for example, no complex eigenvalue is found

in the first 20 modes of the small-delay scenario in Table

V). To increase the accuracy, one should decrease the

time step h, but, as previously discussed, this option is

not viable, due to memory constraints, for large problems

like the one considered in this paper.

A rationale behind the poor results shown by the TIO and

LMS methods compared to the Chebyshev discretization and

Padé method, is as follows. The Chebyshev discretization

method works directly with (14) and is concerned solely with

approximating the e−λτi terms. As such, the quality of the

results depends only on the quality of this approximation.

In the same vein, Padé approximants are concerned with the

approximation of e−sτi terms in (32), and also in this case

the quality of the approximation depends only the order of

the approximants themselves. On the other hand, the TIO and

LMS methods work with (12) and require approximations of

both the ẋ term and the delay terms. Hence, the TIO and

LMS approximations require a step size small enough that the

resulting difference equation is stable. Padé approximants and

Chebyshev discretization are free of this step size restriction.

This explains the particularly poor results with the LMS

method, for which an explicit discretization is used and,

consequently, needs a very small step size to achieve a stable

approximation of the stiff DDAE. The RK based TIO method

uses an implicit discretization, and so is somewhat better than

the LMS method, as results provided in Tables V and VI

indicate.

IV. CONCLUSIONS

This paper compares four different methods to approximate

the spectrum of a DDAE system and applies such methods to

a large-scale real-world power system. Among the proposed

methods, the one based on Padé approximant shows the

lightest computational burden but is less accurate than that

based on Chebyshev discretization. The latter is the technique

that provides the best ratio accuracy/computational burden.

The other two techniques considered in this paper are both

severely inaccurate and highly computationally expensive for

large scale DDAEs.

The main conclusion of the paper is that the eigenvalue anal-

ysis of large state matrices as those obtained when considering

DDAE models is feasible for real-world power systems pro-

vided that a sensible technique and numerical implementation

are used. Future work will focus on determining the feasibility

of algorithms that determine a subset of the spectrum of the

DDAE, e.g., Arnoldi iteration, as well as on statistical analysis

of power systems modelled as multi-delay DAEs.

APPENDIX

CHEBYSHEV’S DIFFERENTIATION MATRIX

Chebyshev’s differentiation matrix DN of dimensions N +
1 × N + 1 is defined as follows. Firstly, one has to define

N +1 Chebyshev’s nodes, i.e., the interpolation points on the

normalized interval [−1, 1]:

xk = cos

(

kπ

N

)

, k = 0, . . . , N. (40)

Then, the element (i, j) differentiation matrix DN indexed

from 0 to N is defined as [47]:

D(i,j) =























ci(−1)i+j

cj(xi−xj)
, i 6= j

− 1
2

xi

1−x2
i

, i = j 6= 1, N − 1
2N2+1

6 , i = j = 0

− 2N2+1
6 , i = j = N

(41)

where c0 = cN = 2 and c2 = · · · = cN−1 = 1. For example,

D1 and D2 are:

D1 =





1
2 − 1

2

1
2 − 1

2



 , with x0 = 1, x1 = −1 .

and

D2 =











3
2 −2 1

2

1
2 0 − 1

2

− 1
2 2 − 3

2











, with x0 = 1, x1 = 0, x2 = −1 .
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TABLE V

20 RIGHTMOST EIGENVALUES FOR THE ALL-ISLAND IRISH SYSTEM – SMALL-DELAY SCENARIO

Chebyshev Discr. Discr. of TIO LMS Approx. Padé Approx. Padé Approx.

N = 7 N · r = 21 h = 0.2 s p = q = 6 p = q = 10

−0.00010 −0.00010 −0.00026 −0.00010 109.19913

−0.02500 −0.00204 −0.00539 −0.02500 108.87505

−0.02646 −0.01022 −0.02693 −0.02641 108.61230

−0.03780± 0.32935i −0.02500 −0.06601 −0.03780± 0.32935i 108.52138

−0.05475 −0.02606 −0.06974 −0.05475 108.25194

−0.06615 −0.04096 −0.10815 −0.06615 107.51873

−0.11681 −0.04804 −0.10833 −0.11681 106.81551

−0.12643± 0.34169i −0.05218 −0.10893 −0.12638± 0.34173i 106.69809

−0.13035± 0.17151i −0.08719 −0.12668 −0.13037± 0.17149i 106.50001

−0.13922 −0.09043 −0.13779 −0.13923 106.30230

−0.13950 −0.09740 −0.20357 −0.13948 106.29072

−0.13978 −0.10155 −0.23023 −0.13979 106.20415

−0.14008 −0.10413 −0.23879 −0.14008 105.75947

−0.14027 −0.11015 −0.24174 −0.14028 105.68017

−0.14048 −0.11367± 0.30866i −0.25728 −0.14047 105.53080

−0.14062 −0.12387 −0.26792 −0.14058 105.33107

−0.14081 −0.12449 −0.26812 −0.14081 104.46121

−0.14104 −0.13058 −0.27482 −0.14104 104.39888

−0.14119 −0.13158 −0.29058 −0.14118 103.87859

−0.14136 −0.13528 −0.32677 −0.14136 103.75343

TABLE VI

20 RIGHTMOST EIGENVALUES FOR THE ALL-ISLAND IRISH SYSTEM – LARGE-DELAY SCENARIO

Chebyshev Discr. Discr. of TIO LMS Approx. Padé Approx. Padé Approx.

N = 7 N · r = 21 h = 0.2 s p = q = 6 p = q = 10

−0.00010 −0.05845 0.90982 −0.00010 −0.00010

−0.01043± 0.28380i −0.15447 0.86571± 0.80200i −0.00768± 0.31098i −0.00768± 0.31098i

−0.02500 −0.19343 0.82424 −0.02500 −0.02500

−0.02644 −0.23237 0.81660 −0.02646 −0.02646

−0.03780± 0.32935i −0.23840± 0.22585i 0.71504 −0.03780± 0.32935i −0.03780± 0.32935i

−0.05475 −0.25508 0.70500± 1.11453i −0.05475 −0.05475

−0.06615 −0.25587 0.59069 −0.06615 −0.06615

−0.08252± 0.81721i −0.29481 0.58296 −0.11681 −0.11681

−0.11681 −0.31764 0.57749 −0.12862± 0.34003i −0.12862± 0.34003i

−0.12774± 0.33959i −0.33064 0.54130 −0.13257± 0.17002i −0.13257± 0.17002i

−0.13305± 0.17041i −0.34386 0.52173± 1.26923i −0.17473 −0.16248± 0.90009i

−0.17064± 0.81911i −0.36627 0.42423 −0.17521 −0.17473

−0.17473 −0.36976 0.37890 −0.17760± 0.27345i −0.17521

−0.17732± 0.27363i −0.66239 0.35163± 1.35619i −0.18222± 0.91411i −0.17760± 0.27345i

−0.17821 −0.67953 0.28856± 1.29241i −0.18551 −0.18551

−0.18153± 0.81508i −0.68946 0.25343± 1.17984i −0.18849 −0.18849

−0.18387± 0.37434i −0.70607 0.23397± 1.16515i −0.19216± 0.37807i −0.19216± 0.37807i

−0.18396± 0.81173i −0.74515± 0.30043i 0.22110± 1.39929i −0.20000 −0.19959± 6.25635i

−0.18551 −0.75329 0.14668± 0.91392i −0.21351± 0.44644i −0.20000

−0.18849 −0.78805± 0.17382i 0.08521± 1.33921i −0.21646 −0.21351± 0.44644i
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